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a b s t r a c t 

This study provides a classification model of two Modern Greek dialects, namely Athenian Greek and 

Cypriot Greek, using information from formant dynamics of F 1, F 2, F 3, F 4 and vowel duration. To this 

purpose, a large corpus of vowels from 45 speakers of Athenian Greek and Cypriot Greek was collected. 

The first four formant frequencies were measured at multiple time points and modelled using second 

degree polynomials. The measurements were employed in classification experiments, using three classi- 

fiers: Linear Discriminant Analysis, Flexible Discriminant Analysis, and C5.0. The latter outperformed the 

other classification models, resulting in a higher classification accuracy of the dialect. C5.0 classification 

shows that duration and the zeroth coefficient of F 2, F 3 and F 4 contribute more to the classification of 

the dialect than the other measurements; it also shows that formant dynamics are important for the 

classification of dialect. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Spoken dialect identification refers to the process of determin-

ng the identity of a dialect based on acoustic evidence. There are

wo main theoretical and methodological approaches to spoken di-

lect identification. The first originates from studies on sociopho-

etics and aims to explain the variation that exists between di-

lects, sociolects, speech styles, and registers, and the causes that

rive language variation and change ( Foulkes and Docherty, 2006;

oulkes et al., 2010; Thomas, 2011; 2013 ). The second approach is

utomatic dialect classification, which aims to develop technolo-

ies for dialect identification in a wide range of speech processing

pplications, such as in speech-to-text systems, spoken document

etrieval, spoken language translation, and in dialogue systems (see

i et al., 2013 , for a review), and may result in high classification

ccuracy of dialects (see Glembek et al., 2009; Dehak et al., 2010;

ehravan et al., 2015 ). Yet, to model speech variation, automatic di-

lect classification methods (e.g., Joint Factor Analysis and i-vector

rchitectures), employ hyper-parameters that can be hard to inter-

ret for the purposes of sociophonetic research (see Glembek et al.,

009; Dehak et al., 2010; Behravan et al., 2015 ). 

The purpose of this study is to offer an account of dialect vari-

tion in terms of vowel formants and vowel dynamics, using ma-

hine learning methods often employed in automatic dialect clas-

ification. To this purpose, this study classifies two varieties, Athe-

ian Greek (AG) and Cypriot Greek (CG), whose phonemic inven-
E-mail addresses: charalambos.themistocleous@gu.se , themistocleous@gmail.com 
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ories contain the same vowels: /i e a o u/ ( Kontosopoulos, 1968;

ewton, 1972a; 1972b; Samaras, 1974; Botinis, 1981; Tseva, 1989;

ongman et al., 1989; Nicolaidis, 2003; Sfakianaki, 2002; Fourakis

t al., 1999; Loukina, 2009; 2011; Themistocleous, 2017 ). Specifi-

ally, AG and CG vowels were produced in controlled settings and

easured at multiple time points, which were then evaluated us-

ng a second degree (2nd) polynomial fit. This method provides a

ich description of vowel formants, as it considers the fluctuation

f a formant’s frequency with respect to time and does not rely

n a single measurement of formants at the middle of the vowel’s

uration (e.g. Cooper et al., 1952; Lisker, 1957; 1975; Stevens and

latt, 1974; Rosner and Pickering, 1994; Themistocleous, 2017 ).

he polynomial fit is appealing as each of the coefficients of the

olynomial relates to characteristics of a formant contour, such

s its position on the frequency axis (zeroth order coefficient)

nd the shape of the curve (see also Cohen, 1995 ). Earlier stud-

es by McDougall (20 05; 20 06) and McDougall & Nolan (2007) us-

ng polynomial equations for regression showed that 2 nd and 3 rd

egree polynomials perform better at 89–96% than raw data and

tatic measurements of vowels (see also Van Der Harst et al., 2014 ).

 key difference of this study with respect to most automatic lan-

uage identification studies is that it employs a text-dependent ap-

roach, whereas most other studies on language identification em-

loy a text-independent approach (see for a discussion of these ap-

roaches Atal, 1974; Doddington, 1985; Farrell et al., 1994; Furui,

997; Gish and Schmidt, 1994; Reynolds and Rose, 1995; Larcher

t al., 2014; Mporas et al., 2016 ). 

http://dx.doi.org/10.1016/j.specom.2017.05.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/specom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.specom.2017.05.003&domain=pdf
mailto:charalambos.themistocleous@gu.se
mailto:themistocleous@gmail.com
http://dx.doi.org/10.1016/j.specom.2017.05.003
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Table 1 

Speech material. 

Vowel stressed unstressed stressed unstressed 

/e/ ˈesa e ̍sa ˈsesa se ̍sa 

/i/ ˈisa i ̍sa ˈsisa si ̍sa 

/a/ ˈasa a ̍sa ˈsasa sa ̍sa 

/o/ ˈosa o ̍sa ˈsosa so ̍sa 

/u/ ˈusa u ̍sa ˈsusa su ̍sa 
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For the classification, we evaluated three different types of dis-

criminative classifiers: Linear Discriminant Analysis (LDA), Flexible

Discriminant Analysis (FDA), and C5.0. These classifiers as opposed

to generative models, such as Naive Bayes and Hidden Markov

Models (HMMs) do not rely on prior distributions and learned

states ( Zhang, 2014 ). The discriminative classifiers identify a class

of a specific observation, e.g., the dialect by generalizing from

previous measurements. Details for each classifier are provided

below. 

First, LDA is a classifier, which is very similar to multi-response

regression. It permits the evaluation of a binary dependent variable

using both continuous and categorical predictors ( Harrington and

Cassidy, 1999 ). Specifically, it attempts to find a linear structure in

the predictors that can best separate two or more groups. LDA re-

lies on the Bayesian probability, the maximum likelihood assump-

tion, and requires that the data are normally distributed. A number

of studies by Najim Dehak and colleagues showed that LDA can

potentially provide good classification outcomes when employed

in the reduction of i-vector dimensionalities of acoustic properties

in state of the art i-vector architectures for speaker ( Dehak et al.,

2010; Sadjadi et al., 2016 ), accent ( Behravan et al., 2015 ), and lan-

guage classification ( Dehak et al., 2011; Sizov et al., 2017 ). 

FDA employs non-parametric techniques for the classification of

categorical variables ( Trevor et al., 1994 ). So unlike LDA, it does not

require that the data are normally distributed. Because not all the

predictors of this study are normally distributed, FDA is expected

to offer a better classification accuracy than LDA. 

C5.0 is a classification algorithm developed by Quinlan (1993) .

It assesses class factors, such as the dialect, based on a predefined

set of predictors. C5.0 generates a decision tree and offers a rank-

ing of features that can indicate the contribution of each acoustic

feature in the classification. Specifically, it evaluates recursively the

data and employs the predictors that can provide the best split-

ting of the data into more refined categories. The splitting crite-

rion is the difference in information entropy (a.k.a., the normal-

ized information gain). The predictor that provides the highest nor-

malized information gain is the one selected for the decision (see

also Woehrling et al., 2009 , who provide a classification of regional

French varieties, using a different decision tree method). Typically,

each split is an interpretation of the variation or impurity in the

data. The algorithm will stop when there are not enough data left

to split. Finally, C5.0 provides both tree and rule models (for an

application of C4.5, which is an earlier iteration of C5.0, on accent

classification, see Vieru et al. (2011) and for the classification of

stressed and unstressed fricatives using C5.0, see Themistocleous

et al. (2016) ). 

To evaluate the effects of vowel acoustic properties on dialect

classification, we also provide classification results for stress and

vowel. A syllable in Modern Greek can be stressed or unstressed;

the position of the stress in a Modern Greek word can change the

meaning of the word, e.g., mi ̍lo ‘speak’ vs. ˈmilo ‘apple’. Stressed

vowels are overall longer and more peripheral than the unstressed

(e.g., Botinis, 1989; Arvaniti, 1991; Themistocleous, 2014; 2015 ). We

also provide comparative classification models for vowels; yet, un-

like previous studies that provide acoustic evidence mainly from

AG vowels ( Kontosopoulos, 1968; Samaras, 1974; Botinis, 1981;

Tseva, 1989; Jongman et al., 1989; Nicolaidis, 2003; Sfakianaki,

2002; Fourakis et al., 1999; Loukina, 2009; 2011; Themistocleous,

2017 ), this study provides cross-dialectal evidence from AG and

CG (see, however Themistocleous, 2017 ). Also, all previous stud-

ies on Modern Greek vowels rely on single acoustic measure-

ments of formant frequencies at the middle of the vowel whereas

this is the first study to analyze formant dynamics of Greek

vowels. 

m  
. Methodology 

This section presents the methods employed for the collection

nd analysis of the acoustic data. It also presents the selection cri-

eria for the classification model reported in the paper. 

.1. Speakers 

A large corpus of AG and CG vowels was recorded in Athens and

icosia. These urban areas constitute the capital cities of Greece

nd Cyprus respectively. 45 female speakers between 19 and 29

ears participated in the study: 25 CG speakers and 20 AG speak-

rs. All speakers were born and raised in Nicosia and Athens re-

pectively. Based on information from a demographic question-

aire, the participants from each dialect constituted sociolinguis-

ically homogeneous groups: they originated from approximately

he same socio-economic background and they were all university

tudents, namely all CG speakers were students at the University

f Cyprus and all AG speakers were students at the University of

thens. All participants knew English as a second language; four

G participants knew French as a third language. None reported a

peech or hearing disorder. 

.2. Speech materials 

The speech materials consisted of a set of nonsense words, each

ontaining one of the five Greek vowels (/ e i a o u /) in both

tressed and unstressed position, word initially and word medially.

he nonsense words had the structure V̀ sa (e.g., / ̍asa, ˈesa, ˈisa,

tc./) or V sà (e.g., /a ̍sa, e ̍sa, i ̍sa, etc./) sV ̀sa (/ ̍sasa, ˈsesa, ˈsisa,

tc./) and sVsà (/sa ̍sa, se ̍sa, si ̍sa, etc./) and were embedded in the

ollowing carrier phrases ( Table 1 ). 

The AG carrier phrase was: 

“ˈipes < keyword > ̍ pali” (You told < keyword > again) and the

G carrier phrase was: 

“/ ̍ipes < keyword > ˈpale/” (You told < keyword > again). 

Each subject produced 80 utterances (i.e., 5 vowels × 2 stress

onditions × 2 word placement conditions × 4 repetitions), result-

ng in a total of 3600 productions. To facilitate vowel segmentation

nd to control formant transitions at the beginning and the end of

 vowel, the voiceless alveolar fricative [s] was selected as the im-

ediate segmental environment–before and after–the designated

owel. Filler words were added in the carrier sentences to pro-

ide variation within the experimental material and to minimize

peaker’s attention on the experimental words. 

.3. Procedures 

The recordings were conducted in a recording studio in Athens,

reece and in a quiet room at the University of Cyprus in Nicosia,

or the AG and CG speech material respectively. Two researchers,

 female AG speaker and a male CG speaker (the author), pro-

ided standard instructions to the speakers before the recording,

.g., to speak at a normal pace, sit appropriately in front of the

icrophone, and keep a designated distance. The target words
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Fig. 1. ROC curves for the models generated by the machine learning algorithms C5.0, FDA, LDA for the classification of speech dialect and stress. 

w  

a  

u  

m  

p  

m  

4

 

o  

T  

v  

s  

s  

v  

b  

F  

w  

f  

v  

i  

a

2

 

a  

p

 

p  

S

6  

o  

w  

f  

e  

t  

f

 

Table 2 

ROC, Sensitivity, Specificity of the models generated by SVM, 

C5.0, FDA, LDA for the classification of speech dialect. 

Category ROC Sensitivity Specificity method 

Dialect 0.83 0.75 0.74 C5.0 

0.78 0.69 0.74 FDA 

0.65 0.68 0.56 LDA 

Stress 0.91 0.83 0.83 C5.0 

0.90 0.80 0.83 FDA 

0.89 0.81 0.80 LDA 

w  

o  

F  

t  

g  

c  

f  

o  

t

2

 

e  

r  

e  

t  

c  

a  

a

 

c  

r  

a  

s  

w  

p  

T  
ere presented in standard Greek orthography (the stress marks

re conventionally represented in Greek orthography). All stim-

li were randomized. Between the repetitions there was a two-

inute break. The speakers read sentences out loud from a com-

uter screen, at a comfortable, self-selected rate. Recordings were

ade on a Zoom H4n audio recorder where voice was sampled at

4.1 kHz. 

For the acoustic analysis, the sounds were analysed by using the

pen source software Praat 5.3.32 ( Boersma and Weenink, 2010 ).

he keywords were located and segmented manually. Specifically,

owel onsets and offsets were located by using simultaneous in-

pections of the waveform and the spectrogram. Because all mea-

ured vowels in the segmental material were interposed between

oiceless alveolar fricatives [s], the vowel onset was clearly marked

y the beginning of F 2 and F 1 and vowel offset by the end of

 2. Vowel onset was located before the first peak in the periodic

aveform and vowel offset was defined as the beginning of the

ollowing fricative consonant [s]. The rise of the intensity at the

owel onset and the fall of the intensity at the vowel offset facil-

tated the segmentation. All segmentation decisions were checked

nd corrected twice by the first author by using a PRAAT script. 

.4. Measurements 

The measurements included the vowel formants ( F 1, F 2, F 3, F 4)

nd vowel duration. Praat’s standard LPC-based method was em-

loyed for the extraction of vowel formants. 

To model formant dynamics, 9 measurements at 9 equidistant

oints from the vowel onset to the vowel offset were conducted.

pecifically, vowels were measured at the 10 − 20 − 30 − 40 − 50 −
0 − 70 − 80 − 90% of vowel duration. In order to avoid any effects

f the adjacent consonants, only seven equidistant measurements

ere included in the final analysis, namely from 20% – 80% (see

or this practice Jacewicz et al., 2011 , p. 686). A polynomial fit was

mployed to model the formant dynamics of F 1, F 2, F 3, and F 4 and,

herefore provide a more detailed and precise characterization of

ormant frequencies. The N th degree polynomial is given by 

f m, j (t) = a 0 ,m 

+ a 1 ,m 

t + a 2 ,m 

t 2 + . . . + a N−1 ,m 

t N , (1)
here t = 1 , . . . , 7 is a discrete index that represents the duration

f the vowel and j an index that varies from 1 , . . . , 4 to denote

 1, F 2, F 3, and F 4 respectively. The index m = 1 , . . . , M represents

he vowel sample approximated with curve fitting. The second de-

ree polynomials employed here result in three polynomial coeffi-

ients: the a 0 , which corresponds to the starting frequency of the

ormant, i.e., at the 20% of the actual vowel’s duration, whereas the

ther two coefficients, namely the a 1 and a 2 describe the shape of

he vowel formants. 

.5. Model evaluation 

Three classification algorithms, namely C5.0, FDA, and LDA were

mployed for the classification of dialect, stress, and vowel. Du-

ation and the three formant coefficients of vowel formants were

mployed as predictors. To evaluate the classification results from

he three classifiers, the data were separated into a training set

onsisting of the 90% of the data (3240 productions) and an evalu-

tion set consisting of the 10% (360 productions) of the data; also,

 repeated 10-fold cross validation with 3 repeats was employed. 

For model comparison, we employed the receiver operating

haracteristic (ROC), the sensitivity, the specificity, and the accu-

acy (see Table 2 and Fig. 1 ). The sensitivity and the specificity

re measures for estimating the performance of the binary clas-

ifications. The sensitivity shows the proportion of positives that

ere correctly identified as positives. The specificity indicates the

roportion of negatives that were identified correctly as negatives.

he ROC curve visualizes these two measures and enables us to
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Fig. 2. CG stressed vowel formants modelled using polynomial fitting. The horizontal lines from bottom to top represented the F1, F2, F3, and F4 formant frequencies of 

Greek vowels [i e a o u]. 
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compare the curves of the different models and select the best

one. The accuracy is the proportion of true results, namely, the

true positives and true negatives. In the case of vowel classifica-

tion, which is not binary, we relied mainly on the accuracy of the

model. The ROC curve is created by plotting the sensitivity of the

model against the 1 - specificity. The best curve is the one that ap-

proaches to the top left corner of the graph whereas a sub-optimal

curve is the one that approaches the 45 ° diagonal of the ROC space

(see Fig. 1 ). 

Overall, C5.0 performed better than the other classification

methods. The worst classifier was LDA, which performed subop-

timally. For this reason, the classification results will be reported

using C5.0. The statistical analysis and the classification was car-

ried out in R ( R Core Team, 2016 ), using caret ( Kuhn, 2016 ) and

the C5.0 , package ( Kuhn et al., 2015 ) ( Table 3 ). 

3. Results 

After curve fitting the vowels, the mean and the standard de-

viation (SD) of the polynomial coefficients a , a , a were calcu-
0 1 2 
ated separately for each vowel, stress, and dialect. The results of

he polynomial fitting of vowel formants are reported in Table 4 ;

ig. 2 shows the fitted F1, F2, F3, and F4 of the CG stressed vow-

ls; Fig. 3 shows the fitted F1, F2, F3, and F4 of the CG unstressed

owels; Fig. 4 shows the fitted F1, F2, F3, and F4 of the AG stressed

owels; and Fig. 5 shows the fitted F1, F2, F3, and F4 of the AG

nstressed vowels. Table 5 shows the mean duration and the stan-

ard deviation for the stressed and unstressed vowels in AG and

G. All vowels differ in their intrinsic duration. Overall, stressed

owels are longer than the unstressed vowels. 

The results reported in this section were all generated by C5.0

ith a repeated 10-fold cross-validation with 3 repeats. Note that

5.0 automatically drops the variables that do not contribute to

he classification so the remaining output always consists from the

redictors that contribute to the classification. 

Dialect: The classification of the dialect (Accuracy = 0.74, 95% CI

0.71, 0.77], kappa = 0.5) involves all formant frequencies not sim-

ly F1, F2, and F3. The coefficients that determine the shape of F2

nd F3 are ranked higher than the effects of stress on F1. The con-
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Table 3 

Metrics for the models generated by C5.0, FDA, LDA for the classification of vowel. 

Method logLoss ROC Accuracy Kappa Sensitivity 

C5.0 0.40 0.91 0.83 0.66 0.83 

FDA 1.25 0.79 0.54 0.42 0.53 

LDA 1.35 0.75 0.49 0.34 0.46 

Method Specificity Positive Pred. Negative Pred. Detection Rate Balanced Accuracy 

C5.0 0.84 0.83 0.83 0.41 0.83 

FDA 0.88 0.55 0.88 0.11 0.71 

LDA 0.87 0.55 0.87 0.10 0.67 

Table 4 

Mean and SD for of the a 0 , a 1 , and a 2 polynomial coefficients of F1, F2, F3, and F4. 

Vowel dialect Stress F1 a 0 F1 a 0 F1 a 1 F1 a 1 F1 a 2 F1 a 2 F2 a 0 F2 a 0 F2 a 1 F2 a 1 F2 a 2 F2 a 2 
M SD M SD M SD M SD M SD M SD 

a CG Stressed 708.72 196.36 23.09 20.70 −1.45 1.25 1796.25 421.67 6.27 50.30 −0.54 2.96 

e CG Stressed 567.80 157.86 14.19 18.38 −0.85 0.99 2018.19 427.56 9.35 60.56 −0.78 3.56 

i CG Stressed 501.40 188.53 12.75 20.33 −0.67 1.18 2262.93 476.78 15.53 52.00 −1.33 2.93 

o CG Stressed 572.43 166.16 13.69 18.09 −0.83 0.97 1675.04 520.23 0.51 38.17 −0.17 2.48 

u CG Stressed 507.80 172.26 9.50 25.00 −0.51 1.44 1677.96 558.75 −9.62 62.55 0.63 4.18 

a AG Stressed 658.45 173.82 25.27 22.33 −1.47 1.22 1779.76 280.62 −2.93 39.73 0.04 2.38 

e AG Stressed 577.05 119.94 21.29 17.45 −1.25 0.89 1934.62 266.63 3.09 37.96 −0.37 2.23 

i AG Stressed 478.81 144.17 14.44 20.81 −0.75 1.07 2123.36 351.08 9.85 39.54 −0.85 2.18 

o AG Stressed 560.13 104.70 21.40 21.49 −1.20 1.13 1576.28 330.91 −11.44 38.11 0.46 2.30 

u AG Stressed 478.65 117.06 15.08 23.27 −0.74 1.18 1568.11 377.44 −14.20 43.80 0.74 2.75 

a CG Unstressed 663.27 184.51 14.19 21.69 −1.03 1.26 1791.61 402.67 −3.50 41.37 −0.08 2.71 

e CG Unstressed 529.05 157.27 8.38 25.98 −0.59 1.47 2026.28 392.70 1.26 50.83 −0.41 3.28 

i CG Unstressed 475.62 167.96 8.91 26.35 −0.53 1.59 2223.61 464.10 6.33 50.91 −0.82 2.97 

o CG Unstressed 535.95 158.42 7.07 27.17 −0.50 1.60 1725.24 439.36 −14.28 55.03 0.60 3.89 

u CG Unstressed 483.44 173.78 2.05 32.87 −0.05 2.13 1803.20 491.43 −22.73 61.84 1.40 4.29 

a AG Unstressed 584.78 166.34 15.53 23.39 −1.06 1.35 1797.82 272.49 −7.92 22.99 0.25 1.60 

e AG Unstressed 513.77 155.02 11.27 24.51 −0.77 1.34 1943.32 257.05 −0.95 24.80 −0.27 1.59 

i AG Unstressed 461.38 184.00 7.98 30.73 −0.41 1.94 2109.45 314.76 −0.33 28.09 −0.40 1.78 

o AG Unstressed 528.68 143.61 0.45 39.38 −0.02 2.44 1643.82 321.36 −26.41 45.34 1.43 3.13 

u AG Unstressed 497.87 185.21 −10.30 54.16 0.85 3.51 1708.39 348.29 −31.10 48.11 1.80 3.47 

F3 a 0 F3 a 0 F3 a 1 F3 a 1 F3 a 2 F3 a 2 F4 a 0 F4 a 0 F4 a 1 F4 a 1 F4 a 2 F4 a 2 

a CG Stressed 2833.48 369.66 −15.01 68.13 0.77 3.96 4010.19 801.41 −42.97 98.32 2.36 5.74 

e CG Stressed 2882.91 344.33 −8.74 56.69 0.54 3.37 3919.62 856.75 −40.44 97.03 2.42 5.67 

i CG Stressed 30 0 0.88 307.24 −1.39 45.86 −0.11 2.83 4015.08 928.47 −18.64 64.90 0.85 3.65 

o CG Stressed 2965.85 311.88 −5.72 46.86 0.22 2.86 4030.25 590.04 −22.72 51.29 1.20 3.06 

u CG Stressed 3011.21 293.61 −9.97 54.80 0.48 3.31 3886.92 857.30 −18.48 60.04 0.93 3.58 

a AG Stressed 2870.93 222.36 −26.99 50.68 1.50 2.90 4086.23 666.12 −41.91 81.15 2.34 4.83 

e AG Stressed 2897.85 224.56 −19.24 48.33 1.05 2.66 4087.10 795.51 −44.94 86.77 2.42 4.93 

i AG Stressed 2930.61 189.79 −11.09 36.12 0.53 1.96 4166.19 599.72 −31.64 72.62 1.58 4.32 

o AG Stressed 2882.88 209.80 −21.57 38.26 1.12 2.18 3766.96 626.73 −15.84 60.19 0.82 3.41 

u AG Stressed 2868.23 193.82 −15.08 40.21 0.67 2.20 3713.15 700.25 −20.33 62.87 1.07 3.67 

a CG Unstressed 2873.43 370.59 −22.79 63.68 1.37 3.91 3944.07 1089.24 −23.92 75.65 1.41 4.70 

e CG Unstressed 2951.65 310.55 −16.92 52.07 0.90 3.22 4051.97 945.40 −18.31 64.77 1.00 3.98 

i CG Unstressed 3012.94 296.61 −10.91 45.54 0.39 2.79 4032.84 1044.23 −9.96 46.12 0.33 2.72 

o CG Unstressed 3020.32 318.88 −18.18 55.19 1.02 3.37 3946.60 989.19 −16.98 42.98 0.92 2.76 

u CG Unstressed 3100.34 320.73 −23.24 48.13 1.35 3.08 3825.24 1094.19 −18.50 48.67 1.05 3.15 

a AG Unstressed 2926.55 204.49 −14.78 32.40 0.72 1.96 4192.51 613.37 −12.56 51.33 0.44 3.17 

e AG Unstressed 2954.14 204.89 −11.38 32.61 0.47 1.80 4225.25 605.10 −8.06 67.08 0.17 3.83 

i AG Unstressed 2972.61 207.23 −11.19 29.80 0.44 1.85 4206.72 655.20 −8.02 44.32 0.06 2.62 

o AG Unstressed 2927.39 233.22 −23.65 37.24 1.33 2.29 3800.89 579.00 −20.60 53.87 1.18 3.31 

u AG Unstressed 2915.60 235.14 −28.97 40.67 1.65 2.66 3727.32 785.16 −26.68 62.37 1.69 3.90 
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c  
ribution of each measurement for the classification of vowels is

hown in Table 6 . 

The duration and the starting frequencies of F2, F3, F4, and F1

ave the greatest contribution for the classification of the dialect.

he polynomials coefficients that determine the shape of the for-

ant contours also contribute to the classification of dialect. 

Stress: The results of the stress classification—cross-validated, 10

old, repeated 3 times—yielded a 83% accuracy, (kappa = 0.7). The

ontribution of each measurement for the classification of vowels

s shown in Table 7 . 

Specifically, duration and F1 a 1 / a 2 , F2 a 2 , and F4 contribute

ore to the classification of stressed vs. unstressed vowels. What

s more important however, is that all acoustic properties con-
ribute in different degrees, especially the polynomial coefficients

hat determine the shape of vowel formants. Notably, the latter

uggests that stress has an effect on the formant contour as a

hole ( Table 8 ). 

Vowels: The classification of vowel shows that all predictors

ontribute significantly for the classification of vowel categories

classification accuracy = 0.57, 95% CI[0.5355, 0.6021], Kappa = 0.5).

he best classification results were obtained for vowel /i/, /u/, and

e/ and the worst for /a/ and /o/. The contribution of each mea-

urement for the classification of vowels is shown in Table 9 . 

The polynomial coefficients of F 1 and the polynomial coeffi-

ients of F 2 and F 3 are the most important properties for the clas-
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Fig. 3. CG unstressed vowel formants modelled using polynomial fitting. The horizontal lines from bottom to top represented the F1, F2, F3, and F4 formant frequencies of 

Greek vowels [i e a o u]. 

Table 5 

Mean duration and standard deviation (in ms) for the AG and CG 

vowels in stressed and unstressed positions. 

Vowels AG CG 

Stressed Unstressed Stressed Unstressed 

M SD M SD M SD M SD 

/e/ 133 28 78 21 137 24 94 19 

/i/ 115 30 58 20 118 28 83 21 

/a/ 142 27 94 19 149 26 107 20 

/o/ 140 28 84 20 139 25 96 22 

/u 121 30 68 19 123 27 82 21 

 

 

 

Table 6 

Rankings of the variable contribution 

for the classification of dialect. 

Rank Variable 

100% duration 

100% F2 a 0 
100% F3 a 0 
100% F4 a 0 
99.04% F1 a 0 
99.03 % F2 a 2 
99.03% F3 a 2 
99.02 % F2 a 1 
92.51% F3 a 1 
92.30 % F1 a 1 
91.21% F4 a 1 
86.36% F1 a 2 
80.15% F4 a 2 

t  

n  

t  
sification of vowels. In addition to the first three formants, F 4 and

duration also contribute to the classification of vowels. 

4. Discussion 

In this study, we ran a number of classification experiments us-

ing vowel data from two Greek dialects: AG and CG. Specifically,
his study tested and evaluated three different types of discrimi-

ative classifier before focusing in just one, C5.0, which was found

o outperform the other two classifiers, namely the LDA and the
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Fig. 4. CG stressed vowel formants modelled using polynomial fitting. The horizontal lines from bottom to top represented the F1, F2, F3, and F4 formant frequencies of 

Greek vowels [i e a o u]. 

Table 7 

Rankings of the variable contribution 

for the classification of stress. 

Rank Variable 

100% duration 

100% F1 a 1 
100% F1 a 2 
99.99% F2 a 2 
99.99% F4 a 0 
99.99% F4 a 1 
99.97% F2 a 1 
99.97% F3 a 2 
99.77% F3 a 0 
99.17% F2 a 0 
98.71% F1 a 0 
91.03% F3 a 1 
84.85% F4 a 2 

F  

t  

v  

Table 8 

Classification matrix with the percentage of correctly classified 

vowels. 

classified as a e i o u 

a 89.30 2.17 6.36 1.41 0.76 

e 3.37 91.34 3.64 1.10 0.55 

i 2.11 1.24 95.78 0.31 0.56 

o 2.43 1.25 4.09 88.83 3.40 

u 2.85 0.63 3.20 1.88 91.45 

t  

1  

2  

T  

o  

s  

s  

t

DA in the classification of dialect. The study provides for the first

ime acoustic evidence of AG and CG formant dynamics, as all pre-

ious studies on Greek vowels rely on a single measurement at
he middle of the vowel formant ( Kontosopoulos, 1968; Samaras,

974; Botinis, 1981; Tseva, 1989; Jongman et al., 1989; Nicolaidis,

0 03; Sfakianaki, 20 02; Fourakis et al., 1999; Loukina, 2009; 2011;

hemistocleous, 2017 ). It also provides for the first time evidence

f the F 3 and F 4 of Cypriot Greek vowels. More importantly, the

tudy shows that formant measurements of F 1–F 4, dynamic mea-

urements, and duration result in high classification accuracy of

hese two varieties using C5.0 decision trees. 
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Fig. 5. CG unstressed vowel formants modelled using polynomial fitting. The horizontal lines from bottom to top represented the F1, F2, F3, and F4 formant frequencies of 

Greek vowels [i e a o u]. 

Table 9 

Rankings of the variable contribution 

for the classification of vowel. 

Rank Variable 

100% F1 a 0 
100% F1 a 1 
100% F1 a 2 
100% F2 a 0 
100% F2 a 1 
100% F2 a 2 
100% F3 a 0 
100% F3 a 1 
100% F3 a 2 
100% F4 a 0 
99.79% duration 

99.77% F4 a 1 
98.92% F4 a 2 
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2  
An advantage of the method employed in this study is that it

resulted in a classification of Greek dialects, using features from

vowels that can be readable by humans and can be interpreted
rom a sociophonetic point of view to explain sociophonetic varia-

ion. In other words, the classification explains how dialect affects

ormant dynamics, and vowel duration, using the actual values of

ormants and duration. Notably, C5.0 classification showed that the

ost significant acoustic properties for the classification of the two

reek dialects are duration and the polynomial coefficients of F 2,

 3, F 4, and F 1—in this order. Also, it showed that the effects of

he dialect pertain higher order formants, such as F 3 and F 4. In

act, F 4 contributes more to the classification of dialect than F 1,

hich—along with F 2—plays an important role for the classification

f vowel and stress. Overall, our findings indicate that the effects

f dialect are not located on specific acoustic properties of vowels

ut affect all measured acoustic properties in different degrees, as

ecame evident by the ranking of the acoustic measurements in

he classification model. 

With respect to stress, the classification showed that stressed

owels are longer than unstressed vowels. This finding corrobo-

ates earlier studies on CG ( Themistocleous, 2017 ) and AG vowels

e.g., Botinis, 1989; Arvaniti, 1991; Fourakis et al., 1999; Loukina,

009; 2011; Themistocleous, 2017 ). More specifically, the classifi-
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ation demonstrated that duration contributes greatly to the dis-

inction between stressed and unstressed vowels (e.g., see Jongman

t al., 1989; Nicolaidis, 2003; Arvaniti, 1991; 20 0 0; Sfakianaki,

002; Fourakis et al., 1999; Themistocleous, 2017 ). Moreover, the

ormant dynamics of AG and CG vowels also contribute to the clas-

ification of stress, that became evident by the contribution of a 1 
nd a 2 polynomial coefficients, which determine the shapes of the

ontours of F 1 and F 2 in the classification of stress. In fact, their

anking in the classification was higher than that of the starting

requency (i.e., the a 0 ), which suggests that there is a difference

n the shape of the formant contours of stressed and unstressed

owels. 

The most significant factors for the classification of vowels are

he polynomial coefficients of F 1 followed by the polynomial co-

fficients of F 2. So, the findings corroborate earlier studies, which

uggest that F 1 and F 2 are the most significant formant frequen-

ies for the classification of vowels (e.g. Cooper et al., 1952; Lisker,

957; 1975; Stevens and Klatt, 1974; Rosner and Pickering, 1994 ).

lso, AG and CG differ in the F 3 formant frequency, which follows

 1 and F 2 in significance based on the C5.0 ranking. This finding is

onsistent with previous findings by Themistocleous (2017) , who

hows that AG high vowels /i u/ and the back /o/ had a signifi-

antly lower F 3 than the corresponding CG vowels; this suggests

hat AG vowels are characterized by more lip-rounding than the

orresponding CG vowels ( Themistocleous, 2017 ). Also, a 1 and a 2 
olynomial coefficients of vowel formants were employed for the

lassification of vowels. These coefficients determine the shape of

he formant contour, which suggests that the overall shape of for-

ant contours differs form vowel to vowel. Note that the duration

n the classification of vowels is ranked lower than in the case of

tress and dialect, which suggests that formants are more impor-

ant than duration for the classification of Greek vowels. 

Overall, the same acoustic measurements can distinguish the

ialect, the stress, and the vowel. The ranking of acoustic measure-

ents determines the classification results in the three classifica-

ion cases. For instance, for the classification of dialect and stress,

5.0 classifier identifies the duration as a more important factor

han vowel formants. Also, it identifies F 4 as more important for

he classification of dialect than for the classification of vowels. 

To conclude, this work established the effects of the acous-

ic properties of AG and CG vowels in highly controlled settings

or the classification of dialect, vowel, and stress. Overall, text-

ependent studies such as this one can result in high accuracy. In

 future study, it is worth comparing these findings with a text-

ndependent study of vowels produced in other types of speech

ata and in more realistic, less-controlled scenarios. 
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