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During spoken communication, the ne acoustic properties & human speech can reveal
vital sociolinguistic and linguistic information about spakers and thus, these properties
can function as reliable identi cation markers of speakersidentity. One key piece of
information speech reveals is speakers' dialect. The rstimn of this study is to provide
a machine learning method that can distinguish the dialectrém acoustic productions
of sonorant sounds. The second aim is to determine the classiation accuracy of
dialects from the temporal and spectral information of a sigle sonorant sound and
the classi cation accuracy of dialects using additional cearticulatory information from
the adjacent vowel. To this end, this paper provides two clas cation approaches. The
rst classi cation approach aims to distinguish two Greek dalects, namely Athenian
Greek, the prototypical form of Standard Modern Greek and Qgriot Greek using
measures of temporal and spectral information (i.e., specal moments) from four
sonorant consonants /m n | r/. The second classi cation stud/ aims to distinguish
the dialects using coarticulatory information (e.g., forants frequencies F1  F5,
FO, etc.) from the adjacent vowel in addition to spectral and @mporal information
from sonorants. In both classi cation approaches, we have enployed Deep Neural
Networks, which we compared with Support Vector Machines, Rndom Forests, and
Decision Trees. The ndings show that neural networks distiguish the two dialects
using a combination of spectral moments, temporal informatn, and formant frequency
information with 81% classi cation accuracy, which is a 14%accuracy gain over
employing temporal properties and spectral moments aloneln conclusion, Deep Neural
Networks can classify the dialect from single consonant prductions, making them
capable of identifying sociophonetic shibboleths.

Keywords: sonorant neural networks, dial ect classication, spectral moments,

machine learning

consonants, deep

1. INTRODUCTION

Listeners associate di erent productions of sonorant corasta with information about speakers'
social identities. For example, in African American VernlacliEnglish, nasals are often weakened
or deleted and the preceding vowel becomes more nasalizgob(, 1977; Brown, 1991; Edwards,
2009; the lateral approximant /I/ can be deleted before labial coasts (e.g., help hep)
(Rickford and Labov, 199%nd rhotics drop in rhotic pronunciations of vowels, as in dbir
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Themistocleous Dialect Identi cation From Sonorants

/bEd/, car! [kA/ . So, sonorant consonants (e.g., nasalg;vectors. A probabilistic linear discriminant analysis (PA) is
laterals, and rhotics) in English can provide acoustic infation  then employed to classify dialects and speakers. More recently
that can distinguish African American Vernacular Englisarh ~ Snyder et al. (2018)roposed a system that replaces i-vectors
Standard American EnglisiB(eile and Wallach, 199%see also with embeddings, which they term x-vectors, that are exedc
Ladefoged and Maddieson, 1996r other language varieties). from a deep neural network. Automatic dialect identi catio
Unlike stop and fricative consonants, sonorant sounds previdmodels have the advantage that they can be implemented to
unique opportunities to study the e ects of dialect on acousticevaluate speech signals fast, without identi cation of vievead
frequencies and on sound spectra. The development of goamhnsonants, and o er high classi cation accuracy of dialects
identi cation models of dialects from individual sounds/phes (e.g., Dehak et al., 2010, 2011; Song et al., 2013; Matejka
is of key importance, as it can inform conversational systemst al., 2014; Ali et al., 2015; Richardson et al., 2015; Naja a
about the dialect; explain sociophonetic variation of indival et al., 2016; lonescu and Butnaru, 2017; Shon et al.,)2018
sounds; and enable practical applications, such as dialedbwever, for the purposes of this study, this approach cannot be
identi cation in language disorders' diagnosis and theraygst, to  employed to explain the crossdialectal di erences of son@ant
our knowledge no other studies attempt to classify dialedrsgus for several reasons: rst, because the input features contynon
information from sonorants. employed [e.g., Mel-Frequency Cepstral Coe cients (MFCCs),
The main goal of this study is to provide a classi cationlog Mel-scale Filter Bank energies (FBANK) features] are
model of dialects that can achieve high classi cation agcyiby not elicited from specic phonemes or phones but rather
relying both on sonorant productions and on their coarticialey ~ from larger parts of speech that may not correspond to
e ects on adjacent vowels. We analyze sonorant consonanlkisiguistic categories; second, it is very hard to nd cogret
from two modern Greek varieties: Athenian Greek, which isand articulatory correspondence for these features; anadl thi
the prototypical form of Standard Modern Greek and Cypriotinput features undergo dimensionality reduction, whichther
Greek, a local variety of Greek spoken in Cyprus. Sonorants amakes di cult an interpretation of features that contribut®
perceptually and morpho-phonologically di erent in these two the classi cation.
dialects (enardos, 1894; Newton, 1972a,b; Vagiakakos,)1973 In Themistocleous (2017awe wanted to show how well
so, they can o er good examples for evaluating classi catiorvowels can distinguish Athenian Greek and Cypriot Greek
models of dialects based on sonorants. and to show how vowel spectral encode information about
Two main trends of research aim to explain dialectalthe dialect. To this end, we provided a classi cation model
di erences from speech acoustics. On the one hand, researci Athenian Greek, as it is spoken in Athens and Cypriot
from sociolinguistics, language variation and change, an@reek, using information from vowels. That is, we measured
sociophonetics analyzes language productions to identifiormant dynamics front1:::F4 formant frequencies and vowel
variables that distinguish dialects using linguistic as&y(e.g., duration (Themistocleous, 201).aT'o model formant dynamics,
discourse and conversation analysis) and employs reseaotd)t we employed second degree polynomials and modeled the
such as questionnaires, language surveys, telephoneievies;v contour of vowel formant frequencies measured at multiplegim
and dialectal mapsHurnell et al., 1999 Sociophonetic research points from the onset to the o set of vowels. Using a decision
utilizes acoustic recordings and studies variation in stgjn tree model, known as C5Quinlan (1999; Salzberd1999, we
such as vowels and consonants and quanties phenomenahowed that vowel formants and vowel dynamics enable the
such as vowel shifts and mergers [e.g., the merger of the higtlenti cation of Athenian Greek and Cypriot Greek (Accuracy
front lax and tense vowels il vs.feelin certain dialects of =74, 95% CI[71, 77%)]).
American English ffoulkes and Docherty, 2006; Foulkes et al., To classify the two language varieties in this study, we are
2010; Thomas, 20)]3One important nding from these studies employing a feed-forward arti cial neural network, which &
is that acoustic di erences in speech from di erent varietiefls o form of a deep neural network architecture (DNN) (see dlsdly
a language that are often imperceivable to the human ear, a$ al., 2016; Gelly and Gauvain, 2D1This model can learn
they intensify over time and from one generation of speakeraon-linear function approximators that enable the classi oati
to another, have the potential to drive language chang®¢v, of the two dialects. To evaluate the DNN model, we compare
1999. Nevertheless, sociolinguistics and sociophonetics aiits performance to three dierent machine learning models:
less interested in providing automatic classi cation modelDecision Trees (DTs), Random Forests (RFs), and Support
of dialects but rather their main focus remains on identifyi Vector Machines (SVMs). DTs and RFs split the data in a
the sociolinguistic e ects of dialects on acoustic propertdés binary manner based on the attribute that best explains the
speech sounds. data; the result is a series of branching nodes that form the
More recently, automatic dialect identi cation and autonat classi cation tree. However, unlike DTs, RFs, instead of oee,t
language identi cation have o ered methodological approaghe provide ensemble results from multiple decision tree models.
such as i-vector models that provide currently the statehet~ Finally, SVMs employ hyperplanes to best separate the data
art on automatic language and dialect identi catiodd€hak into groups. Moreover, we evaluated the performance of the
et al., 2010, 2011; Song et al., 2013; Matejka et al., 20bdodels using 3-fold crossvalidation and validation split and
Richardson et al., 20)5I-vector models commonly employ provided the following evaluation measures: the precisioraltec
Gaussian mixture models (GMMs) and factor analysis to reducand f1 scoresThe details of the methods are discussed in the
the dimensionality of the input into simpler representations,, following section.
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We are analyzing sonorant consonants in Athenian GreeRABLE 1 | Athenian Greek Consonants.
and Cypriot Greek, as sonorants in these two dialects dier
perceptually and morpho-phonologically, so we expect them to
provide good markers for the classi cation of these two ditdec v Cv v Cv v Cv v Cv v Cv
Sonorants are consonants produced with a wide stricture &zfrm

Labial Labiodental Alveolar Palatal Velar

by the approximation of the active and passive articulator!®” R .
Nasals, rhotics, and laterals dier from fricatives and stopg‘as@ m M n n N
in that their degree of stricture is wider, approaching that of-ater ! L

vowels Boyce and Espy—WiIson, 1997; Espy-W”SOH et al-v 2Oogi/mbols to the right in a cell are voiced@v) and those to the left are voiceless (v).
Harrington, 2010 (for a crosslinguistic study of sonorants and
exceptions, sekadefoged and Maddieson, 19980 produce

nasals, speakers block the air ow somewhere in the oral avittagLe 2 | cypriot Greek Consonants.
e.g., at the lips for the bilabial nasal /m/ or the alveoli fbet

production of the alveolar nasal /n/, aIIowing the air ow to Labial Labiodental Alveolar Postalveolar Palatal Velar
escape through the nasal cavity after passing from an opening vCy v Cv v Cv v Cv v Cv v Cv
that results from the lowering of the velum; this createdidet

formants and anti-formants. Lateral and rhotic consonaate  Tap B R

characterized by complex articulatory gestures that entifde Tril r

lateralization and rapid interruption of the air ow, in latais Nasal s. m M n fi N
and rhotics, respectively. Laterals are produced with ditin Nasal G. m: n N:

formants and anti-formants created in the oral cavity. Todab Later. S. I
di erences of sonorant spectra, we have calculated from theater. G. I
acoustic signals of sonorants the spectral momentscémer of — _ _
gravity, which is the mean of the spectral energy distribution, theSymboIs to the right in a cell are voicedGv) and those to the left are voiceless (V).
spectral standard deviatipwhich is a measure of the variance,
the spectral skewnesshich is a measure of the symmetry ofin Athens and Thessaloniki. Cypriot Greek is a local variety
the spectral distribution, and thepectral kurtosjswhich is a of Greek spoken in Cyprus; other local varieties of Greek,
measure of the degree of thickness of the tails of the digioh  including Cretan Greek, Pontic Greek, and Tsakonian Greek.
(Davidson and Loughlin, 2000Spectral moments can enable Athenian Greek and Cypriot Greek are not characterized by
the comparison of the spectral properties of sonorants in theowel raising and reduction, so they are classi ed as souather
two dialects (e.gForrest et al., 1988; Gottsmann and Harwardt,varieties, yet acoustically Athenian vowels are more ratisad
2011; Schindler and Draxler, 2013; Themistocleous, 2B16aCypriot Greek vowelsThemistocleous, 201).cCypriot Greek
2017b,}. and Athenian Greek di er in their pronunciation due to phonetic

We are also analyzing the coarticulatory e ects of sonorantand phonemic di erencesEotinis et al., 2004; Eftychiou, 2010;
on the adjacent vowel frequencies (for an early studyMseen, Themistocleous, 2014, 2017a,b,c; Themistocleous et ak), 20
1980, as these also carry information about sonorants and abowtnd although Cypriot Greek speakers understand and usually
speakers' dialect. In fact, in Swedish and in other languabes code-switch to Athenian Greek in o cial settings and in the
lowering of the third formant frequencyF3) of the following presence of speakers that are not familiar to the dialect, Aigre
vowel is a major cue for the perception of rhotic&( De Weijer, Greek speakers, especially if they are unfamiliar to Cypriee®y
1995; Recasens and Espinosa, 2007; Heinrich et al.) @ot0 often report di culties understanding Cypriot Greek speakers
the role of F3 in Greek, seerhemistocleous, 201).cSince Athenian Greek sonorants are shownTable 1and Cypriot
each sonorant exercises di erent coarticulatory e ects omwgb Greek sonorants are shown ifiable 2 A close comparison
formant frequencies, these e ects can be employed to identifgf these phonemic systems reveals some notable crossdialect
the sonorant sound. Moreover, as the production of sonorantsimilarities and di erences. In both varietigd/] is allophone of
can dier from one dialect to another, both the acoustics/m/ before other labiodental soundsj][and [N are allophones
of sonorants and their coarticulatory e ects can distinduis of /n/ that occur before front and back vowels, respectively;
speakers as belonging to di erent sociolinguistic groups;un o also, L] is an allophone of /I/ before a front vowel. There are
case, sonorants can index a speaker as a member of Athenialso di erences between these two varietig&ifardos, 1894;
Greek and Cypriot Greek. Newton, 1972a,b; Vagiakakos, 19 Gypriot Greek distinguishes

To explain the dierences of Athenian Greek and Cypriotlong /n: m: I: r:/ and short/n m | R/ sonorant sounds. The
Greek on sonorants, let us now provide an overview of sonsranduration is the main perceptual di erence between long and
in Greek dialects. The Greek dialectal space is traditipnallshort sonorants; in the case of /r/, the long phoneme is redliz
distinguished into two main groups of language varieties owith a trill /r:/, whereas the short is apH. Also in Cypriot
“idioms”: the northern idioms whose unstressed vowels can bGreek there is a devoiced rhotic sound, which occurs usually
raised and/or reduced and the southern idioms, where voweh environments before stops as irippRa] “door.” Cypriot
raising and reduction does not apply. Standard Modern Greeksreek is characterized by stronger nasal pronunciation than
is spoken in the main urban centers of Greece, especialfthenian Greek and preserves nasals in nasal + voiced stop

[
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clusters (e.g//lampa/ ! ['lamba], “lamp/light bulb”; /"pente/  TABLE 3 | Experimental material.
I /"pende/ “ ve") whereas Athenian Greek usually elides them
(i.e.,/"lampa/ ! ['laba], “lamp/light bulb’; pente/"pente/ !
I'pede/ “ve”) (see Householder et al., 1964yho discusses

Stress [m] [n] [ (R

S "misa sa"mi "nisa sa"ni "lisa sa"li i3 sa"Ri

denasalized clusters in Athenian Greek). Also, Cypriot &ree” mi'sa - sami o ni'sa fsani o itsa o tsall o Risa o fsaRi
unlike Athenian Greek retains the nasal /n/ in the accusativ S masa  ‘sama  ‘nasa sana  ‘lasa  sala 4R sa'Ra
V] ma'“sa sa"ma na'sa "sana la"sa "sala R a'"sa "saRa

in determiners (articles), adjectives, and nouns; thisultes
in several assimilation phenomena with respect to place of
articulation; for example, some of these morpho-phonological
e ects are the following:

/tin "mam:an mu/, the-ACC.SG mother-ACC.SG my
[ti"m:am:am:u], “my mother”; assimilation of nasals in an /n/
+ /m/ environment a ecting the place of articulation of the
rst sound and results in a long/geminafen:], cf. Athenian
Greek fima"mamul].

/tin  "nikin /, the-ACC.SG victory-ACC.SG, “the victory’
I ti"niicin; assimilation of the two nasals resulting in a
geminate/long nasal production, cf. Athenian Greg*jci]].

/tin  "polin/, the-ACC.SG city-ACC.SG, “the city"
[ti"mbolin] assimilation results in a change of the nasal
consonant's place of articulation; the following voiceldgsp s
consonant assimilates with the nasal with respect to voic
so that a pre-nasalized voiced stop occurs (i.e., [mb]), ¢
Athenian Greeki"boli].

/ton "likon/, the-ACC.SG wolf-ACC.SG, “the wolf?
[to"l:ikon], the nasal assimilates with the following lateral
aproximant in place of articulation, the duration is retained
which corresponds to along/gemindt# sound, cf. Athenian
Greek to"liko.

2.2. Procedure

We recorded the speakers in their hometowns, that is, the
Athenian Greek speakers were recorded in a recording studio
in Athens and the Cypriot Greek speakers were recorded in
a sound proof room at the University of Cyprus in Nicosia,

. which ensures that speakers are primed to speak their native
language variety. To avoid in uences from the experimenter—
for example, it is known that Cypriot Greek speakers tend
to code-switch to Athenian Greek when an Athenian Greek
speaker interacts with them—the instructions to Atheniare€k
speakers were provided by an Athenian Greek speaker and
the instructions to Cypriot Greek speakers were provided by a
peaker of Cypriot Greek. Only instructions that were relévan

he recording procedure were provided, e.g., to keep a degidna
distance from the microphone, to avoid focusing their attent

on keywords. The materials were recorded using a Zoom H4n
audio recorder, and the voice was sampled at 44.1 kHz and
analyzed using Praat (sBeersma and Weenink, 20)L After the
recordings, speech productions were segmented into vowells an
consonants manually.

Overall, this is the rst large scale study that employs sgctr

and frequency information from Athenian Greek and Cypriot

Greek sonorants (but for the duration of sonorant consorsant 2.3. Data

seeArvaniti and Tserdanelis, 2000; Tserdanelis and ArvanitiWe have analyzed the acoustic spectra of sonorant consonants,

2001; Armostis, 2009; Themistocleous, 2014, 2016b namely we have analyzed nasal (e.g., /m/ and /n/), lateral
approximant (e.g., /I/), and rhotic (e.g., /r/) sonorant sam

2. METHODOLOGY produced by Cypriot Greek and Athenian Greek speakers. To
elicit sonorant productions, we designed a controlled ragdi

2.1 Participants experiment where we manipulated the sonorant sound, its

Forty speakers participated in this study: 20 female speakep®sition in a keyword, and the vowel environment. Sonorants
born and raised in Athens, Greece and 20 female speakengre embedded in CVCV keywords (Seble 3. The controlled
born and raised in Nicosia, Cyprus. The recordings wer€CVCV environment facilitates the elicitation of acoustic ete
conducted between 2011 and 2012 as part of a bigger stutlyat are of interest for the study only, namely the e ect
of Athenian Greek and Cypriot Greek vowels and consonantef the dialect on sonorant by controlling for the segmental
(seeThemistocleous, 2017a,h,Speakers formed homogeneousenvironment, stress, and sonorant position in the utterafdtes
groups with respect to gender (e.g., only female speakers), ag@proach has the advantage that it enables the collectiorssf le
(most di er 2-3 years only), educational background (all eer data, whereas selecting sonorants from conversationatspae
university students), and socioeconomic condition (alt@fom  induce greater variability in the input and to address thisuis
middle-class urban families). All subjects were native kpesa  will require more data for training. The bilabial nasal [mhet

in their dialects. Overall, all Athenian and Nicosian speake alveolar nasal [n], alveolar lateral approximant [l], andealiar
employed in their everyday speech that which corresponds t@p [ R were embedded in the speech material at the beginning
their age and urban lifestyle, namely urban Athenian andamrb and the middle of a word preceding two vowel environments,
Nicosian speech style. The degree of inter-dialectal famili the vowel /a/ and the vowel /i/. To facilitate the crossditde
depends on the language variety: overall, Athenian speakers hcomparison in this study, we compare Athenian Greek sonorants
very little previous knowledge of Cypriot Greek whereas Cytprioto the corresponding Cypriot Greek singleton sonorants, which
Greek speakers were exposed to Athenian Greek pronunciati@re the unmarked case in the short—long consonant pair (see the
very early in their lives through education and the media. discussion on Greek sonorants in the Introduction).
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X input features where

X input features where
X=Xq... Xg2

FIGURE 1 | Process diagram showing the steps required to select the besmodel for the classi cation of Standard Modern Greek (SMG) iad Cypriot Greek (CG) for
each one of the two classi cation approaches.

The Athenian Greek keywords were embedded in theCypriot Greek keywords were embedded in the carrier phrase:
carrier phrase written in standard Greek orthography:/“ipes keyword"pale/ You told keyword again, where only the
["ipes keyword "pali/ (You told keyword again) and the last word diers in one sound (e.g.j//vs. el) to make the
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carrier phrase more natural to Athenian Greek and CypriotTABLE 4 | DNN design for the crossvalidation and validation split usi input
Greek speakers, respectively; this dierence in the carrigpatures from sonorants (classi cation 1).

phrase does not a ect the production of the sonorant. To add
variation in the materials and distract speakers from thgéted

Crossvalidation Validation split

sounds, we added other words as distractors (which were thgput layer

keywords of another experiment). All stimuli were presented i
random order.

A total sum of 5,120 sonorant productions were produced;
namely, 40 speakers 4 consonants 4 repetitions
2 word positions 2 stress conditions 2 vowels From the

Hidden layers

Output layer

70 neurons,
Activation: ReLU

4 HL; 70 neurons
each, Activation: ReLU

70 neurons,
Activation: ReLU

6 HL;70 neurons
each, Activation: ReLU
1 neuron, Activation:
Sigmoid

1 neuron, Activation:
Sigmoid

sonorant spectra, we elicited the following properties:

Sonorant duration
Intensity

Center of gravity
Standard deviation
Skewness
Kurtosis.

oukrwnpE

the
the

rst
following

We also measured
(ie., Fl:::F5) of

ve formant frequencies
vowel that were

measured at the 25, 50, 75% of the vowel's duration:

F1 25F1 50F1 75:::F5 25F5 50F5 75%. The acoustic
measurements were conducted in Praat (s&gersma and
Weenink, 201Y.

2.4. Deep Neural Networks
An overview of the process followed for the classi cation is
shown inFigure 1

Classi cation Tasks: To estimate the contribution of the

acoustic properties of sonorants and the contribution of
sonorant-vowel sequences to the classi cation accuraey, w
have conducted two classi cation tasks. Classi cation 1sim
to distinguish the two dialects, using information from the

spectral moments and duration of sonorants. Classi cation
2 aims to distinguish dialects by combining spectral
moments, sonorant duration, and frequency information
from sonorantC vowel sequences, i.e., spectral moments,
F1:::F5and mearF0, maximum and minimumnfO.

Model comparison: In both classi cation tasks, we have
trained four machine learning models: DNN, SVMs, RFs

related classi cation tasks in the pasBiaves et al., 2013;
Themistocleous, 201Y.c

and DTs. All models have been employed in speech‘-\l

times using di erent speakers in the training and test sets.
Using di erent speakers for the training phase and evaluation
phase ensures that the evaluation makes use of completely
new independent samples. For the validation split, the data
were split into 80% training and 20% evaluation sets and
randomized within each set. Speakers in the training and test
sets were di erent.

Model optimization: A. Hyperpameters for the optimization
algorithm, training epochs of neural nets, number of layers,
and batch size were selected during model optimization.
Speci cally, all DNN models were optimized as follows: i. A
min-max scaler was tted on the training set and transformed
the training and evaluation sets separately. This approach
ensures that there is no information about the speaker in
the training set. ii. A ReLU activation function was employed
in the input and hidden layers, only the output layer had
a sigmoid activation to perform the binary classi cation of
dialect (that is Athenian Greek vs. Cypriot Greek)das et al.,
2013; He et al., 20)5iii. The optimization algorithm was
“stochastic gradient descent” (SGD) with 0.1 learning ,rate
0.9 momentum, and decay which wksarning rateepochs

iv. DNN models were trained for 500 epochs for each fold
in the crossvalidation task and for 800 epochs in the 80-20%
validation split task. v. The batch size was set to 15.

B. The SVMs, RFs, and DTs were optimized separately for each
classi cation. Namely, we ran several SVMs, with di erent
number of kernels and RFs with di erent number of trees. DTs
were employed without optimizations.

ext, we present the architecture with the best performarare, f
each classi cation.

Model evaluation: Models were designed and evaluated2.4.1. Classi cation 1

using two evaluation methods: validation split and groupi. DNN: The design for the DNN in both the crossvalidation
crossvalidation. Validation split was motivated by the factand in the validation split is shown iffable 4 The predictors
that it can enable us to present further measures, namelgmployed in Classi cation 1 include information from sonortan
the precision, recall, AUC, anfll scoreF1 scoreand AUC only, namely there were seven input features: sonorant éarat
provide standardized scores of the accuracy for unbalancedtensity, spectral center of gravity, spectral standardaten,
designs. The receiver operating characteristic curve (ROS§pectral skewness, spectral kurtosis, and the type of sonorant.
curve)is a curve thatis created by plotting the true positater The DNN had four dense hidden layers with 70 neurons in
against the false positive rate. The area under ROC providdise crossvalidation task and six dense hidden layers wither@el
an estimate of the model performance. An optimal model hasayers in the validation split. The output layer had one unit.

an AUC curve closer to one (1) whereas a model with 0.5 ii. SVM, RF, DT: We ran SVMs and RFs with dierent
AUC means that its predictions are closer to chance. For thaumbers of kernels and trees correspondingly; the modelhbélt
group cross-validation, each classi er has been evaluhtee the best performance was for SVMs, the model with three linear
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TABLE 5 | DNN design for the crossvalidation and validation split usg 24 input Classi cation 1, except from the DT, which had a slightly highe
features from sonorantC vowel sequences (classi cation 2). accuracy in Classi cation 1. Overall, the best accuracy @ th
validation split is provided by SVMs in Classi cation 2, i.e49%.

Crossvalidation Validation split
Input layer 110 neurons, 110 neurons, 32 CrOSS'Valldatlon
Activation: ReLU Activation: ReLU The results from the crossvalidation are presentedFigure 2
Hidden layers 4 HL; 110 neurons 6 HL;110 neurons The RF model provided the highest accuracy, i.e., 67% in
each, Activation: ReLU each, Activation: ReLU  Classi cation 1. In contrast, DNNs provided the highest
Output layer 1 neuron, Activation: 1 neuron, Activation: classi cation accuracy, namely 81% accuracy in Classboati
Sigmoid Sigmoid 2 that resulted in a 14% accuracy gain over the best model

of Classi cation 1. In fact, a Wilcoxon rank sum test showed

that Classi cation 1 accuracy and Classi cation 2 accuraeyev
kernels for the RF, the model with 60 trees; we did not modii‘)ﬁIglnl cantly di erent (W D .g’p. < .0.05).F|gure 4 shows the
DT's hyper-parameters. mean ROC/AUC; the shading indicates the SD from the Al.{C

mean. The AUC results correspond to that of the accuracy, which
2.4.2. Classi cation 2 suggests that the design is balanced.

i. DNN: The design for the DNN in both the crossvalidation
and in the validation split is shown iffable 5 Classi cation 2 4, DISCUSSION
contained 25 predictors measured from teenorantC vowel
Duration, Mean FO, Minimum FO, Maximum FO, F1:::F5 When speakers produce speech, they reveal compelling
measured at the 25, 50, 75% of vowel duration, intensitytecen information about themselves through the ne acoustic
of gravity, standard deviation, skewness, kurtosis, aedype of properties of their voice, in a subtle, highly personal, and
sonorant. In addition to the input and output layers, the DNN hard to fake manner. For example, they reveal information
had 5 hidden layers. All layers were dense with 110 neuraris ea about their emotional state (happy, sad, etc.), physiological
only the output layer had a single unit for the classi catidihe  condition (body size, health, age etc.), and social charstics
DNN was run for 800 epochs. (education, occupation etc.), along with the linguistic naegs

ii. SVM, RF, DT: As in Classi cation 1, we ran SVMs and RFsthey communicate. Listeners can elicit this information by
with di erent numbers of kernels and trees correspondinghet decoding the acoustic signalgé&torre et al., 2002; Boemio
best performing SVM model had 3 linear kernels and the bestt al., 2005; Giraud et al., 2007; Hickok and Poeppel, 2007,
performing RF model had 512 trees; there was no optimizatio@016; Abrams et al., 2008; Wright et al., 20ldowever, it is
for DTs. a challenge to explain how listeners distinguish sociolistui

All machine learning models were implemented in Pythoninformation in the acoustic signals. In the case of dialetiis
3.7.3 using the libraries BMPY, MATPLOTLIB, PANDAS, and can be demanding as dialects often share many similarities in
SCIKIT-LEARN (Jones et al., 20)iifor the deep neural networks their sound structures.
we employed the KRAS(Chollet, 201}, a high-level application The aim of this study was to provide a classi cation model
programming interface that runs on top of ENsofFLow that can distinguish dialects from sonorant productions. The
an “end-to-end open source platform for machine learning”study o ered two machine learning classi cation approaches.

developed by Googlé\padi et al., 201)5 In each classi cation approach, four di erent machine leargin
models were trained: DNNs, SVMs, RFs, and DTs. Then, the
3. RESULTS performance of the models was evaluated on new data. During

this phase, the prediction of the model, i.e., whether the samio
In this section, we report the results from the validation spli was produced by an Athenian Greek speaker or a Cypriot Greek
and the results from the 3-fold grouped cross-validation forspeaker was compared to the actual label of the dialect. (Note
Classi cation 1 and Classi cation Zable 6and Figure 2shows that during the evaluation, the dialect is not known by the
correspondingly the output of the models from the validationmodel). We showed that two Greek dialects, Athenian Greek
split and crossvalidatiorFigures 3 4 shows the ROC/AUC for and Cypriot Greek, can be distinguished eight (8) times out

the validation split and crossvalidation correspondingly. ten (10) correctly from a sequence of a sonorant /m, n, r, I/
) _ _ consonant and a vowel. Overall, this result demonstrates tha
3.1. Validation Split information from vowel frequencies in combination with spet

Table 6shows models' accuracy, precision, recall, and f1 scoresamd temporal information from sonorants distinguishes the
Classi cation 1 and Classi cation 2, respectivafjgure 3shows two dialects and increases the classi cation accuracy of the
the ROC and the AUC of Classi cation 1 and 2 machine learningdialect. Both the crossvalidation and the validation split\pde
models. In Classi cation 1 the best AUC is provided by RFsupport for this nding. Machine learning models, especially
(69%), followed by DNN (68%) whereas in Classi cation 2, theDNNs, provide superb opportunities to distinguish patterns in
best AUC is provided by SVMs (74%). ROC/AUC measures anthe acoustic structure of sounds by considering both indinald

f1 scores are in agreement with accuracy measures. In tialida measurements of acoustic properties and the patterns they form
split, most Classi cation 2 models had higher accuracy than i with other predictors.
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TABLE 6 | DNN, SVM, RF, and DT model accuracy, precision, recall, anfl. score from validation splitin classi cation 1 and classi cation 2.

Model Classi cation 1 Classi cation 2

Accuracy Precision Recall f1 score AUC Accuracy Precision Recall f1 score AUC
DNN 68 71 68 66 68 73 73 73 73 73
SVM 63 63 63 63 63 74 75 74 74 74
RF 69 69 69 69 69 73 73 73 73 73
DT 64 64 64 64 64 63 63 63 63 63

Crossvalidation Accuracy

B Classification 1
i Classification 2
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~
o

Accuracy
(o)}
o

w
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20

101

o_

DNN SVM RF DT

FIGURE 2 | Mean accuracy for classi cation 1 and classi cation 2 from the3-fold crossvalidationof random forests (RF), support vector machines (SVM), desion
trees (DT), and deep neural networks (NN) classi cation mod& error bars show the SD.

Earlier research showed that information from vowels carsonorants di erently and suggests that spectral moments p@vid
distinguish Athenian Greek and Cypriot Greeki{emistocleous, signi cant information that can distinguish the two dialextTo
20173. In this study, we designed two classi cation approachegut it di erently, RFs can distinguish the dialect from a single
to explain whether i. sonorants alone can distinguish Atlaeni sonorant sound correctly as Athenian Greek and Cypriot Greek
Greek and Cypriot Greek and/or ii. sonorants and vowels ar@almost seven times out of ten.
required to distinguish the two dialects. In Classication 1  Nevertheless, Classi cation 2 models resulted in a greater
we had employed spectral moments and temporal informatioraccuracy than Classi cation 1 models. In Classi cation 2, DINN
as predictors, whereas in Classication 2, we employed autperformed all other models, by providing 81% classi cation
combination of spectral moments and frequency informationaccuracy in the crossvalidation task, which is a 14% inereas
from vowels. The best performing model in Classi cation 1 waf the classi cation accuracy with respect to Classi catibn
provided by RFs, which resulted in 69% classi cation accuracyAlso, the DNN model had the smallest standard deviation,
This outcome shows that speakers of the two dialects produaehich suggests that this model provided more consistent result
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FIGURE 3 | ROC/AUC for random forests (RF), support vector machines (3$X), decision trees (DT), and deep neural networks (DNN) folassi cation 1 (A) and
classi cation 2 (B). The y-axis represents the true positive rate (i.e., the pegsion) against the false positive rate (i.e., 1-recall)h& best model has an ROC that is
closer to 1 whereas a bad model has an ROC closer to 0.

FIGURE 4 | ROC(AUC) curves of random forests (RF), support vector mattes (SVM), decision trees (DT), and deep neural networksNI) for classi cation 1 (A)
and classi cation 2 (B). The y-axis represents the true positive rate against the Ige positive rate. The best model has an ROC that is closer to Whereas a bad model
has an ROC closer to 0. The shaded area indicates the SD from éhcross-validation mean.
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than the other models. However, Classi cation 2 models alsthis study is a narrow dialect classi cation system and in many
outperformed the results fromlhemistocleous (2017&that  respects it provides accuracy close to that of other statéef-t
employed information from vowels only. That study resulted i art systems.
74% classi cation accuracy. So overall, Classi cation Z/joied To conclude, this study showed that a tiny segment of
the best results compared to Classi cation Thgmistocleous, a sonorant sound can convey multi-dimensional information
20173. This nding suggests that combining information from both linguistic and sociolinguistic information. By emplogn
sonorants and vowels increases the prediction accuracy. machine learning, this study demonstrated that two dialexfts

It is possible to draw analogies to this nding with the Greek, Athenian Greek and Cypriot Greek, can be distinguished
way humans distinguish dialects. Humans acquire sociolstgu  better by spectral and temporal information from sonorants,
competence very early in their lives, and speci cally the#delct yet a combination of spectral and temporal information
(Grohmann et al., 200)7then using this information they elicit from sonorants and acoustic information from adjacent vbwe
information about their social environments and become ®or frequencies provides more robust classi cation outcomes. We
socially awarel(@abov et al., 1964; Jones et al., J0During  have employed speci c features to classify speech sounds. In
human speech perception, speech information is analyzed arghr future research, we will provide classi cation modelsttha
combined in the cortex, so that subphonemic and phonemican classify types of phonemic, physiological, sociolingyistid
features may arise in a compositional mannkleGgarani et al., pathological, etc., information from speech productions.
2014; Binder, 2096 Humans can identify the dialect of the
speaker often with a single sound. Similarly, the machineleg  DATA AVAILABILITY STATEMENT
models provided in this study can learn and become more aware
of the social distinctions of Athenian Greek and Cypriot Gtee The datasets generated for this study are available on sedue
speakers by identifying phonetic properties that charactehize the corresponding author.
particular groups of speakers from their sonorants. Second, we
become more con dent that these models will distinguishthet ETH|ICS STATEMENT
dialects when more information is provided to the models as it

was evidenced from the comparison of Classi cation 2 model®ata for this study were collected during 2011 in Nicosia
with those from Classi cation 1. and Athens as part of a sociolinguistics study that involved
So how does the model provided here fare with respecollecting information about Greek dialects. A total of 4&slthy
to dialect classi cation models? First, it should be notédtt female adult speakers participated voluntarily in the study, b
when comparing dierent approaches that employ dierent providing a short recording of their voice; the task of the
methodological tools, many di erent parameters should bestak recording was comfortable, not stressful, and relativélgrs
into account. For example, how dierent are the dialects oralso, it did not put speakers' health and physical condition
language varieties they try distinguish; if two dialects agy in risk in any way. For these reasons, further ethics approval

similar then it may be harder for listeners and machine léagn  \as not required. Nevertheless, all participants providedteni
models to identify patterns that discriminate the two diakct jnformed consent.

Also, there are may be di erences in the aims and designs of

two dialect identi cation systems. For example, a broad esyst AUTHOR CONTRIBUTIONS

that classi es dialects from longer parts of speech may be able

to identify patterns that distinguish dialects, but it mayvea CT conducted the designed and run the experiments, conducted

to deal with more variation in the input signal (e.ghli et al.,  the statistical analysis, and prepared the manuscript.
2015; Naja an et al., 2016; lonescu and Butnaru, }QifTereas

a narrow system that distinguishes dialects from a few seundFUNDING

produced in controlled settings may fare better to explain how

well the dialects di er given these sounds but not others. FoFunding was received from the research project Transcranial
example (e.g.5hon et al., 2098 compared two systems that Direct Current Stimulation for Primary Progressive Aphasia
employ FBANK features and MFCCs and showed that a singleonducted at Johns Hopkins University (NCT:02606422) Pl
feature set achieves 73% accuracy, while the best systém tKgrana Tsapkini and from Rikshankens Jubileumsfond—The
combined multiple features achieved 78% on a dialect test s8tvedish Foundation for Humanities and Social Sciencesyitiir
consisting of 5 dialects. In this regard, the system preskeime the grant agreement no: NHS 14-1761:1 PI Dimitrios Kokkisak
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